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Digital signal processors (DSPs) represent one of the fastest growing segments of the embedded world. Yet
despite their ubiquity, DSPs present difficult challenges for programmers. In particular, because
computation speed is critical to DSP applications, DSPs as a rule focus on supporting fixed-point
operations.

This focus means that programmers must not only deal with mathematically sophisticated applications, but
they must also deal with the errors introduced by performing these applications using reduced-precision
arithmetic. This type of error analysis is yet another subject to be mastered by DSP programmers.

While it would be ideal if programmers could avoid using fixed-point arithmetic, as a practical
consideration, they cannot. Fixed-point DSPs execute at gigahertz rates; floating-point DSPs peak out in
the 300-400 megahertz range.

Because fixed-point DSPs are consumed in large volumes, their price per chip is a fraction of the price of a
floating-point DSP. As a result, the only developers who can reasonably justify using a floating-point DSP
are those developing low-volume applications requiring high precision arithmetic.

While converting floating-point applications to fixed-point appears daunting, the task often suffers from
"fear of the unknown" syndrome. With knowledge of the issues, the right tools, and a well-thought out
development methodology, the conversion process is very manageable.

Without knowledge of the issues, the right tools, and a well-thought out development methodology,
floating-point applications can in fact suffer the same problems as fixed-point equivalents. The reduced
precision and range of fixed-point numbers means that fixed-point applications encounter stability
problems more easily than floating-point applications, but both types of applications encounter them.

Figure 1 — Ill-conditioned problem

To illustrate more concretely, consider the set of simultaneous linear equations in Figure 1. High school
algebra teaches one way of solving simultaneous equations: add and subtract multiples of rows and
columns to eliminate variables from positions until you get an easily-solved system (an upper triangular
matrix).

Solving the system this way yields a result of x = [-14 138 134]. Alternatively, you can compute the
left-inverse of the matrix and multiply that by the vector on the right. The analog to this solution in the
scalar world (that is, where the left operand is a scalar rather than a matrix) is computing 1/A (where A is
the left operand) and multiplying both sides of the equation by that quotient.

The left side is reduced to just x; the right side will be the solution. That method yields a solution of x =
[-41.75 27.0 -78.5] — very different from the first. This difference is not just a function of these two
methods; other methods will yield different answers as well. The difficulty is the problem itself.

Figure 1 illustrates an "ill-conditioned problem." Ill-conditioned problems are problems that are "close" or



"nearby" other problems whose solutions are not nearby the true mathematical solution of the original
problem. So, a slight change in the problem (as caused, for instance, by round-off error while solving) can
produce an answer that's nowhere close to the solution of the original problem.

Ill-conditioned problems require care to solve even when in double-precision arithmetic. The message of
ill-conditioned problems is that properties of a numerical algorithm require close study, regardless of
whether the algorithm is implemented in floating-point or in fixed-point. Fixed-point arithmetic by
definition has less precision and thereby more error than floating-point arithmetic. Less precision triggers
instability more easily, but instability can arise using floating-point or fixed-point.

Understanding how fixed-point arithmetic triggers stability issues requires a quick review of fixed-point
arithmetic. "Fixed-point" arithmetic is a phrase that encompasses three different forms of arithmetic
formats: integer arithmetic, fractional arithmetic, and mixed arithmetic. Integer arithmetic is the
fundamental building block for all other formats (including floating-point arithmetic). In integer arithmetic,
bits are interpreted as the 2's-complement representation of an integer. Figure 2 illustrates a 4-bit integer
number.

Figure 2 — Interpretation of bits in a 4-bit integer

Integers may be either signed or unsigned. In the case of an unsigned integer, the leading bit is not treated
as a sign bit, but instead a multiple of the next higher power of 2 (in the example of a 4 bit number in
Figure 2, the lead bit multiplies +8 rather than -8).

The range of numbers which an integer can represent is dependent on the number of bits N in the integer.

For unsigned numbers, the smallest possible value is 0; the largest possible value is 2N-1. For signed

numbers, the smallest possible value is -2N-1; the largest is 2N-1-1. The smallest resolution for an integer is
one.

Integers are perfect for representing integral values, but most real world quantities require finer resolution.
That requirement drives the second format: fractional arithmetic. Fractional arithmetic uses the same
integer quantities, but interprets them as a fraction by assuming that the decimal point (technically, a
"binal point") is inside the quantity rather than at the right.

In the case of unsigned fractional numbers, the binal point is implicitly at the left (since there is no need
for a sign bit). Signed fractional numbers must reserve one bit to represent the sign, placing the binal point
one bit from the left. Figure 3 provides more details on the fractional representation.

Figure 3 — Interpretation of fractional numbers

Fractional numbers obviously provide a more nearly continuous set of values than integers, and thereby
provide more resolution. The resolution is not free; fractional numbers have a more limited dynamic range,
since fractions are limited to having an absolute value that is less than or equal to 1.

The obvious compromise is to combine the two into a mixed format. In such a format, the binal point is not



set at any specific location within the number; it is instead allowed to be anywhere within (or, for that
matter, outside) the number proper. This flexibility allows the programmer to trade resolution versus range
by choosing the binal point placement. Again, however, nothing is free. Generally, the programmer must
manually track the binal point location. While not difficult (particularly to those who grew up in the era of
slide rules), it is tedious.

Mixed format provides a balance between integers and fractionals; a programmer can trade bits to obtain
either more range or more resolution. The dynamic range depends on the number of integer bits as well as
the total number of bits in the quantity. For I integer bits, a signed mixed mode number will range between

-2I-1 and 2I-1-2-(N-I-1); an unsigned number will range between 0 and 2I-2-(N-I).

Mixed mode incurs another cost. With the exception of fractional multiplication, which requires a little bit of
extra maneuvering, both integer and fractional arithmetic can be affected using standard integer
operations.

Mixed mode is not so straightforward. Adding a mixed mode number with 5 integer bits and 3 fractional
bits to a mixed mode number with 4 integer bits and 4 fractional bits requires shifting to align the binal
point prior to doing the addition proper. Forgetting to align (easy to do given that you have to manually
track the binal point) creates frustrating errors.

Fixed-point processors gain speed and power efficiency over floating-point processors at the cost of
reduced precision, reduced range, and increased headaches resulting from manual binal point tracking.
Fixed-point requires that programmers find a fixed-point representation small enough to execute efficiently
(the fewer the bits, the more speed and power efficient the application) but that maintains enough range
and precision to execute successfully.

Note that "execute successfully" means more than just avoiding instabilities in the algorithm. Most signal
processing involves image files or sound files that are evaluated by human senses. A precision loss that is
not detectable by human senses is certainly acceptable; greater losses in precision may not be so.

Additionally, signal processing algorithms are mathematically complex, and need exploration and
understanding at the floating-point level. Once the floating-point properties are understood and a stable
algorithm has been created, an understanding of the data is required.

Balancing range and resolution in the fixed-point format requires a thorough knowledge of the range of the
data. Once those characteristics are understood, a prototype implementation is next. Issues such as
getting the proper shifts for addition of fixed-point numbers and tracking the binal point of mixed-mode
numbers are not difficult, but they are tedious.

Tracking these issues through a detailed implementation is difficult; it is much better to start at a higher
level that has less detail. In other words, time spent speeding up an incorrect algorithm is not time
productively spent.

These requirements have led to a fairly uniform methodology for DSP applications, illustrated in Figure 4.

Figure 4 — DSP application development flow

While not universal, this flow is the choice of a large number of DSP development teams. Initial prototyping
is done in floating point in M, the language of the Matlab interpreter1. M is an excellent language for high
level prototyping and exploration.

After initial exploration and prototyping, the algorithm is manually converted into a floating-point C
application. The conversion is necessary because the next step involves understanding the data, which in
turn requires a large amount of simulation.

The Matlab interpreter, like any interpreter, is slow compared to compilers. It cannot provide the simulation



speed necessary to simulate large computations. Since C is compiled, it provides the speed required to do
enough simulation to understand the fixed-point precision requirements.

Once these characteristics are understood, a third manual conversion — this time to fixed-point C — is
undertaken. C provides some support in terms of tracking binal points and getting fixed-point results, and
all DSPs provide support for C compilers. C is not an ideal language in that it does not directly support
some features such as saturation arithmetic (all C arithmetic is modulo by default) that are required on
DSPs, but it is a much easier development language than assembly. This fixed-point model then serves as
golden reference for the final implementation.

This development methodology, while common, is far from ideal. The same application is rewritten by hand
four times. Because the initial development in M is in floating point, getting reference results for the final
implementation is difficult. Changes in specification required from fixed-point problems are not uncovered
until the third model is developed; feeding those changes back into the beginning of the development cycle
is time-consuming, painful, and error-prone.

Because there are 4 different models written in 4 different languages, communication is difficult. Basic C
provides little support in terms of tracking binal points; C++ can help this, but at a price — the resulting
implementation code is less efficient. Even with these flaws, this methodology is a proven way of
developing DSP applications.

Technology advances can eliminate many of these flaws. At least two companies now provide fixed-point
support for M. This support allows the exploration and graphical facilities of M to be applied to fixed-point
programs in addition to floating-point programs, making it easier to diagnose reduced-precision problems.

M also enables automatic tracking of binal points, eliminating a major headache. The result of such
exploration can be a golden M model that produces bitwise identical results to the application running on a
DSP.

Unfortunately, fixed-point support in M is not enough to solve all the fixed-point exploration problems. As
mentioned previously, simulation is important for verifying that a quantization meets the "human
perception" test. Interpreted execution cannot provide enough simulation cycles to perform that test.

Compiled simulation is a fundamental technology requirement. Similarly, you cannot explore fixed-point
characteristics without knowing the types of various operands and operations (that is, are they fixed-point
or floating-point), again a technology not currently supported in M.

With these technical advances, however, the design flow illustrated in Figure 5 becomes feasible. In such a
flow, all exploration — floating-point and fixed-point — is performed in M, resulting in one golden M model
that provides results that are bitwise identical to those arising from the implementation. Compilation
technology can then automatically convert that fixed-point model into an implementation-level model
tuned to a particular processor.

Figure 5 — Improved design flow

Using a fixed-point DSP for a signal processing application is more difficult than using a floating-point DSP,
but not that much more difficult. Running an application in fixed-point is not such a fearful event,
particularly if the proper analysis has been performed to verify the floating-point algorithm up front. When
this analysis is extended to fixed-point, fears of overflows and underflows are unfounded.

Given the cost and performance advantages of fixed-point DSPs, there are strong rational reasons to
balance against the unfounded numerical fears for converting to fixed-point processors. And, as chips
decrease in size and correspondingly increase in speed, the "application" portion of Application Specific
Integrated Circuits (ASICs) is becoming far more sophisticated mathematically. Increased mathematical
sophistication means increased exploration and verification at both floating-point and fixed-point
representations. This will expand the need for improved methodologies in ASIC and FPGA development.
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